компьютер научился распознавать одиночные клетки. в том числе раковые → лучшие клиники и врачи Москвы 2020 | MEDRATING.RU

Новости медицины

12/10

Компьютер научился распознавать одиночные клетки. В том числе раковые

12/10/2017
Использование разработанной бельгийскими учеными программы позволило различить отдельные типы раковых клеток в олигодендроглиоме и меланоме. Статья опубликована в журнале Nature Methods.

Процесс синтеза РНК в клетке зависит от сети регуляции генов , в которой ограниченное количество факторов транскрипции и кофакторов регулируют друг друга и синтезируемые гены. Синтезируемые белки определяют работу различных клеток организма, что позволяет распознавать и отличать их. Всего было разработано несколько методов, позволяющих определить из данных секвенирования РНК отдельной клетки, какие белки ей производятся, но эти методы не использовали анализ регуляторной последовательности для прогнозирования взаимодействия между факторами транскрипции и целевыми генами. В новом алгоритме эти связи учитываются.

Строго говоря, SCENIC (расшифровывается как Single-CEll regulatory Network Inference and Clustering, распознавание и кластеризация регуляторной сети отдельной клетки) — это не отдельная программа, а рабочий процесс, основанный на использовании трех новых пакетов проекта Bioconductor. Первый из них, GENIE3, определяет потенциальные целевые факторы транскрипции на основе коэкспрессии. Второй, RcisTarget, ищет наиболее важные факторы и определяет прямые цели анализа (регулоны). Наконец, третий, AUCell, оценивает активность регулонов в отдельных клетках. Также ученые использовали инструмент GRNBoost в качестве альтернативы GENIE3 на больших наборах данных. Подробную документацию всех перечисленных программ, а также исходный код и обучающие руководства можно найти на сайте проекта.

Чтобы оценить работу алгоритма, ученые протестировали его на данных секвенирования РНК хорошо изученных клеток мышиного мозга. Программа выявила из 1046 исходных модулей коэкспрессии 151 регулонов. Оценивая активность регулонов, ученые выявили ожидаемые типы клеток вместе со списком потенциальных основных регуляторов для каждого типа. Более того, кластерный анализ по типу клетки оказался точнее, чем у многих специализированных методов кластеризации отдельных клеток.

Также исследователи применили SCENIC для определения состояний клеток в наборе данных, полученных РНК-секвенированием 4043 клеток олигодендроглиомы (взятых из шести различных опухолей) и 1252 клеток меланомы (взятых из 14 поражений). Из-за мутаций клеток, специфичных для опухолей, и сложных хромосомных аберраций распознавание состояний раковых клеток оказалось более сложным, чем для случая нормальных клеточных состояний. Обычный кластерный анализ позволяет установить только тип ткани, из которой была взята раковая клетка, но SCENIC разглядел более сложную картину. Для олигодендроглиомы он обнаружил три различных типа клеток, для меланомы — два.

С помощью разработанного учеными алгоритма можно будет построить более точную карту клеток человеческого тела. Также он поможет лучше понять процессы, управляющие производством и активностью различных типов клеток, и позволит эффективнее распознавать различные виды рака.

Источник

Написать нам

Наши контакты

117420, Москва, улица Наметкина, 10Б, строение 1
Medrating
  • 117420, Москва, улица Наметкина, 10Б, строение 1
  • +7(495)784-83-73
Согласие на обработку персональных данных
Согласие на обработку персональных данных Настоящим в соответствии с Федеральным законом № 152-ФЗ «О персональных данных» от 27.07.2006 года свободно, своей волей и в своем интересе выражаю свое безусловное согласие на обработку моих персональных данных ООО Лаборатория Инновационных Систем (ОГРН:1097746279212, ИНН:7728700459), зарегистрированным в соответствии с законодательством РФ по адресу: 117393, Москва, улица Профсоюзная, 66 (далее по тексту - Оператор). Персональные данные - любая информация, относящаяся к определенному или определяемому на основании такой информации физическому лицу. Настоящее Согласие выдано мною на обработку следующих персональных данных: - Email; - Фамилия; - Имя. Согласие дано Оператору для совершения следующих действий с моими персональными данными с использованием средств автоматизации и/или без использования таких средств: сбор, систематизация, накопление, хранение, уточнение (обновление, изменение), использование, обезличивание, передача третьим лицам для указанных ниже целей, а также осуществление любых иных действий, предусмотренных действующим законодательством РФ как неавтоматизированными, так и автоматизированными способами. Данное согласие дается Оператору и третьему лицу(-ам) ООО Интегрум Медиа (ИНН: 7728593126, ОГРН: 5067746346201) для обработки моих персональных данных в следующих целях: - для связи с отправителем сообщения. Настоящее согласие действует до момента его отзыва путем направления соответствующего уведомления на электронный адрес info@linsystems.ru. В случае отзыва мною согласия на обработку персональных данных Оператор вправе продолжить обработку персональных данных без моего согласия при наличии оснований, указанных в пунктах 2 – 11 части 1 статьи 6, части 2 статьи 10 и части 2 статьи 11 Федерального закона №152-ФЗ «О персональных данных» от 27.06.2006 г.
ПРИНИМАЮ
поделиться